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ABSTRACT
Approximate execution is a viable technique for energy-con-
strained environments, provided that applications have the
mechanisms to produce outputs of the highest possible qual-
ity within the given energy budget.

We introduce a framework for energy-constrained execu-
tion with controlled and graceful quality loss. A simple pro-
gramming model allows users to express the relative impor-
tance of computations for the quality of the end result, as
well as minimum quality requirements. The significance-
aware runtime system uses an application-specific analyti-
cal energy model to identify the degree of concurrency and
approximation that maximizes quality while meeting user-
specified energy constraints.

Evaluation on a dual-socket 8-core server shows that the
proposed framework predicts the optimal configuration with
high accuracy, enabling energy-constrained executions that
result in significantly higher quality compared to loop per-
foration, a compiler approximation technique.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Run-time
environments; C.4 [Performance of Systems]: Modeling
techniques, performance attributes; D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming

General Terms
Performance, energy efficiency
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1. INTRODUCTION
Energy consumption is a fundamental challenge for the en-

tire computing ecosystem, from the tetherless devices that
must operate in severely energy-constrained environments
to the datacenters that must tame the data deluge. Large-
scale computational experiments that underpin big science
are hampered because the inordinate power draw of high-
performance computing hardware makes the implementa-
tion of Exascale systems impractical. Likewise, current tech-
nologies are too energy-inefficient to realize smaller and more
intelligent wearable devices for a range of ubiquitous com-
puting applications that can benefit society, such as person-
alized healthcare.

Computing systems execute programs under the assump-
tion that every instruction in a program is equally significant
for the accuracy of the program output. This conservative
approach to program execution may unnecessarily increase
the energy footprint of a system. Earlier work on approxi-
mate computing [1, 8, 11] shows that in several application
domains, a program may produce virtually unaffected out-
put if some parts of the program generate incorrect results
or even fail completely. Many data-intensive applications
and kernels from multimedia, data mining and visualization
algorithms can tolerate a certain degree of imprecision.

Approximate computing can benefit programs that exe-
cute in energy-constrained environments. Consider for ex-
ample an embedded system running on batteries, such as a
mobile phone or an autonomous robot: when the battery
is low, it may be preferable to run certain computations
with a limited energy budget to prolong system lifetime,
even if this comes at reduced output quality, or an accept-
able compromise in user experience. As another example,
cloud providers contemplate billing their clients based on
the energy consumption of the hosted client applications.
Clients would like to make their applications energy-aware
and flexible, so that the energy cost of each application fits
the owner’s available budget. Furthermore, the willingness
of a specific client to pay for energy may vary over time.



In this paper we introduce the first significance-driven
programming framework for energy-constrained
approximate computing. The framework comprises a pro-
gramming model, a compilation-profiling-modeling toolchain
and a runtime system. The programming model allows the
developer to express the significance of computational tasks,
depending on how strongly these tasks contribute to output
quality. The developer can also provide approximate ver-
sions of selected tasks with lower complexity than that of
their accurate counterparts. Approximate tasks may return
inaccurate results or just a meaningful default value.

Our framework compiles and subjects each program to an
offline profiling phase that uses default input data sets to
measure the program energy footprint under different de-
grees of parallelism and approximation. This information is
used to train a model that estimates the energy footprint
of the program for unseen inputs and execution configura-
tions, where parallelism and degree of approximation may
vary. At runtime, the energy estimation model identifies the
configuration that achieves the highest output quality under
a user-defined energy budget.

This paper makes four contributions: (i) We introduce
a programming model that allows the developer to struc-
ture the computation in terms of distinct tasks with differ-
ent levels of significance, and to supply approximate ver-
sions of non-significant tasks; (ii) We introduce a profiling
and model-training process to predict the energy footprint
of programs as a function of the input size, the number of
cores used to run the program and the ratio of program
tasks that are executed accurately; (iii) We introduce a run-
time system that uses our model to enforce execution con-
figurations with the highest possible output quality within a
user-defined energy budget; (iv) We experimentally evaluate
our approach and show that it is superior to loop perfora-
tion [13], a compiler-based approximation technique.

Our system can predict energy consumption accurately
for all but one of our benchmarks. This prediction is used
effectively by the runtime system to achieve up to 80% en-
ergy savings, while gracefully degrading output quality. In
the one problematic benchmark, execution time and energy
depend not only on input size and execution configuration,
but also on the structure of the input data. Such a program
is not amenable to profile-driven modeling and optimization.

The rest of the paper is structured as follows. Section 2
introduces the programming model. Sections 3 and 4 dis-
cuss the energy modeling and prediction methodology re-
spectively, as well as the runtime system which exploits our
model to allow graceful quality degradation under energy
constraints. Section 5 presents the experimental evaluation
of our framework on a multicore server, using six benchmark
kernels that we ported to our programming model. Section 6
gives an overview of related work. Section 7 concludes the
paper and presents directions for future work.

2. PROGRAMMING MODEL
Part of the problem of energy inefficiency in computing

systems is that all parts in a program are treated as equally
important, despite the fact that only a subset of these parts
may be critical to produce acceptable program output. Our
vision is to elevate significance characterization as a first
class concern in software development, similarly to paral-
lelism and other algorithmic properties that programmers
traditionally focus on. To this end, the main objectives

of the proposed programming model are to allow program-
mers to: (i) express the significance of computations in
terms of their contribution to the quality of the output;
(ii) specify approximate alternatives for selected computa-
tions; (iii) express parallelism, beyond significance; (iv) en-
able optimization and exploration of trade-offs, via offline
and online methods.

1 int sblX(byte *img , int y, int x) {
2 return img[(y-1)*WIDTH+x-1]
3 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
4 - img[(y-1)*WIDTH+x+1]
5 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
6 }
7

8 int sblX_appr(byte *img , int y, int x) {
9 return /* img[(y-1)*WIDTH+x-1] Ommited taps */

10 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
11 /* - img[(y-1)*WIDTH+x+1] Ommited taps *//
12 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
13 }
14

15 /* sblY and sblY_appr are similar */
16 void row_acc(byte *res , byte *img , int i) {
17 unsigned int p, j;
18 for (j=1; j<WIDTH -1; j++) {
19 p = sqrt(pow(sblX(img , i, j) ,2) +
20 pow(sblY(img , i, j) ,2));
21 res[i*WIDTH + j] = (p > 255) ? 255 : p;
22 }
23 }
24

25 void row_appr(byte *res , byte *img , int i) {
26 unsigned int p, j;
27 for (j=1; j<WIDTH -1; j++) {
28 /* abs instead of pow/sqrt ,
29 approximate versions of sblX , sblY */
30 p = abs(sblX_appr(img , i, j) +
31 sblY_appr(img , i, j));
32 res[i*WIDTH + j] = (p > 255) ? 255 : p;
33 }
34 }
35

36 double sobel(void) {
37 int i;
38 byte img[WIDTH*HEIGHT], res[WIDTH*HEIGHT ];
39 /* Initialize img array and reset res array */
40 ...
41 for (i=1; i<HEIGHT -1; i++)
42 #pragma omp task label(sobel) approxfun(row_appr) \
43 in(img[i*WIDTH:(i+1)*WIDTH -1]) \
44 out(res[i*WIDTH:(i+1)*WIDTH -1]) \
45 significant((i%9 + 1) /10.0)
46 row_acc(res , img , i); /* Compute a single
47 output image row */
48 #pragma omp taskwait label(sobel) ratio(0.35)
49 }

Listing 1: Programming model use case: Sobel filter

We adopt a task-based paradigm where the programmer
expresses both parallelism and significance using #pragma
directives; this facilitates non-invasive and incremental code
transformations without extensive code re-factoring and re-
writing. Our model uses the latest version of OpenMP [6],
so task scheduling decisions are taken by the runtime sys-
tem, which also considers the data dependencies between
tasks. Listing 1 depicts our programming model in the im-
plementation of the Sobel filter, which we use as a running
example.

Tasks are specified using the #pragma omp task directive
(Listing 2), followed by the task body function. The signif-
icance of each task is given by the significant() clause. It
takes values in the range [0.0, 1.0], indicating the relative



#pragma omp task [significant (...)] [label (...)]
[in(...)] [out (...)] [approxfun(function ())]

Listing 2: #pragma omp task

importance of the task for the quality of the output. De-
pending on their significance, tasks may be approximated
or dropped at runtime. The special values 1.0 and 0.0 are
used for tasks that must be unconditionally executed accu-
rately and approximately, respectively.

For tasks with significance less than 1.0, the programmer
may provide an alternative, approximate task body, through
the approxfun() clause. This function is executed whenever
the runtime opts to approximate a task. It typically im-
plements a simpler version of the computation in the task,
which may even degenerate to setting default values for the
task output. If the runtime system decides to execute a
task approximately and the programmer has not supplied
an approxfun version, the task is dropped. The approxfun
function implicitly takes the same arguments as the function
implementing the accurate version of the task body.

Task input and output is explicitly specified via the in()
and out() clauses. This information is exploited by the run-
time to detect task dependencies. Finally, label() can be used
to group tasks under a common identifier (name), which is in
turn used as a reference to implement synchronization at the
granularity of task groups (discussed later in this section).

As an example, lines 41-46 of Listing 1 create a sepa-
rate task to compute each row of the output image. The
significance of the tasks gradually ranges between 0.1 and
0.9 (line 45), so that there are no extreme quality fluctua-
tions across the output image. The approximate function
row appr implements a lightweight version of the computa-
tion. All tasks created in the specific loop belong to the sobel
task group, using img as input and res as output (lines 43-
44).

#pragma omp taskwait [label (...)] [ratio (...)]

Listing 3: #pragma omp taskwait

Explicit barrier-like synchronization is supported via the
#pragma omp taskwait directive (Listing 3). A taskwait can
serve as a global barrier, instructing the runtime to wait for
all tasks spawned up to that point in the code. Alternatively,
it can implement a barrier for a specific task group, if the
label() clause is present; in this case the runtime system
waits for the termination of all tasks of that group.

Importantly, omp taskwait can be used to control the
minimum quality of application results. Using the ratio()
clause, the programmer can instruct the runtime to execute
(at least) the specified percentage of tasks – either globally
or in a specific group, depending on the presence of a la-
bel() clause – in their accurate version, while respecting task
significance (a more significant task should not be executed
approximately, while a less significant task is executed accu-
rately). The ratio serves as a single, straightforward knob to
enforce a minimum quality in the performance / quality /
energy optimization space. Smaller ratios give the runtime
more energy reduction opportunities, but with a potential
penalty in terms of output quality.

As an example, line 48 of Listing 1 specifies a barrier for
the tasks of the sobel task group. The runtime needs to
ensure that at a minimum, the most significant 35% of the
group tasks are executed accurately. Note that the runtime
may opt for a higher ratio, provided this is feasible with the
energy budget of the program.

3. MODELING AND PREDICTION OF AP-
PLICATION ENERGY FOOTPRINT

We propose an analytical model to predict the energy con-
sumption of an application under different input sizes and
execution configurations, in terms of number of cores used
and the mix of accurate and approximate tasks. We assume
a general purpose shared-memory architecture with multiple
multicore processors. All cores within each processor share
the same last level cache. The model is trained through an
offline profiling and fitting phase, discussed in Section 3.2.

3.1 Analytical model

3.1.1 Execution Time Modeling
Equation 1 models the sequential execution time of an ap-

plication with m task-groups. Each task group i consists of
ni tasks, is executed with a ratio ri and its accurate and
approximate task functions execute in Tacc and Tapp sec-
onds on average, respectively. The average execution time
of tasks depends on both problem size and the number of
tasks; a larger problem size may require additional tasks to
be created, or more work per task, or a combination thereof.
Moreover, this allows the profile-driven model fitting phase
to account for locality, caching and memory traffic effects
due to different input and intermediate data footprints re-
lated to different problem sizes. These effects can signifi-
cantly affect task execution time.

Tseq(~r, s) =

m∑
i=1

ni · (ri · Tacci(s, ni) + (1− ri) · Tappi(s, ni))

(1)

Tpar(~r, s, C) =
Tseq(~r, s)

C · efficiency(s, C)
(2)

Equation 2 estimates parallel execution time of the target
application when executing on C cores. The efficiency(s, C)
term approximates application scalability on different num-
bers of cores. It depends on input problem size (s) and the
number of cores (C). On a multiprocessor with multicore
processors, we assume a packed thread allocation strategy,
where all cores in a processor must be allocated to threads
before allocating threads on another processor. This is the
most energy efficient allocation strategy in the common case.

3.1.2 Power Modeling
The power consumption of processing units during pro-

gram execution has two components, given in Equation 3.

P = Pbackground(C) + Pdynamic(C, s, ~r) (3)

Pbackground corresponds to the“background”power consumed
by active CPU cores (C), whereas Pdynamic corresponds to
the power component which varies depending on the com-
putations executed on each core. The latter depends on the
number of cores, application input size and application mix
of accurate/approximate tasks.



3.2 Offline Profiling and Model Fitting
During profiling, each application is executed with three

different, representative data-sets, of varying sizes (size(s))
and thus memory footprints. To account for locality, caching
and memory traffic effects, we execute with a small working
set that fits in the last level cache (LLC) of a single proces-
sor, a large working set that exceeds the total LLC capacity
of all processors in the system1 and, finally, an intermediate
working set. For each input, we execute the application for
all possible (~r,C) configurations. We measure the average
execution time of approximate and accurate tasks,(Tacc and
Tapp) for each task group and the total execution time of
each group. Finally, we measure the overall execution time
and power consumption of the application.

Profiling is followed by a model fitting phase, during which
profiling data serve as input to a regression process. The fit-
ting phase predicts execution time and energy consumption
of the application for different configurations in terms of
problem size, number of cores and ratio of accurate to total
number of tasks.

The first step of the fitting phase produces an estimation
function of the average execution time of accurate and ap-
proximate tasks. We perform regression to map the average
execution time of each category of tasks (approximate, ac-
curate) to the problem size and number of tasks. A separate
function is created for each possible core count. We use the
average execution time of tasks observed when executing
across all ratios. Exponential, polynomial and linear fit-
ting functions are all attempted and we keep the one which
achieves the most accurate estimations compared to profil-
ing data. For the applications considered in this paper we
note that the most frequently used function is of the form
T imetask(s, ni) = a · ( s

ni
)b, where a and b are the outputs

of multivariate regression.
Next, we evaluate the function that computes the effi-

ciency term, using the measured sequential and parallel ex-
ecution times for different combinations of problem sizes and
number of cores (the latter for parallel execution times). We
also experiment with exponential, polynomial and linear fit-
ting functions. The result is a separate function for each
core count, correlating efficiency to problem size.

Finally we evaluate the function that computes power (P ).
Profiling results indicated that on our specific experimental
platform, (Intel Sandy Bridge, dual-processor, octa-core pro-
cessors) Pdynamic is negligible, whereas Pbackground consists
of two terms: one which is linearly dependent on the num-
ber of active CPU packages (sockets) and a second which is
linearly dependent on the number of active cores. This ob-
servation was confirmed by our results of the fitting process
using regression. Therefore, for our experimental platform,
Equation 3 degenerates to a look-up table, connecting power
to the number of cores used. The table is common for all ap-
plications, problem sizes and approximate to accurate task
ratios.

4. RUNTIME SYSTEM
We extend a task-based parallel runtime system that im-

plements OpenMP 4.0-style task dependencies [17] to sup-
port our programming model for energy-aware computing.

1We skip the large data-set for the Monte Carlo PDE solver
because it produces unrealistic execution times.

The runtime system implements a master/slave work shar-
ing scheduler. The master thread starts executing the main
program sequentially. Spawned tasks are distributed to lo-
cal, per-core work queues round-robin. Tasks are released for
execution when their true dependencies are satisfied. The
runtime system implements an efficient mechanism for iden-
tifying and enforcing dependencies between tasks that arise
from annotations of the side effects of tasks with in(...) and
out(...) clauses. A ready for execution task moves from
a local work queue to a local ready queue. Workers select
the oldest tasks from their ready queues for execution. Work
stealing is used to facilitate load balancing between workers.

The main objective of the energy-aware runtime system is
to execute the application within the energy budget speci-
fied by the user, while achieving the highest possible output
quality. Energy budgets can be defined either relatively to
the energy consumption of the most energy-efficient fully ac-
curate execution, or as an absolute value. The energy budget
is set with an environment variable (ENERGY BUDGET ).
Given the energy budget, the problem size and the number
of created tasks, the runtime system uses the offline-trained
model to predict the Pareto-optimal configuration in terms
of number of cores and ratio of accurate/approximate tasks.
This configuration is selected to achieve execution within
the energy budget, while maximizing the ratio of accurate
tasks. If the runtime cannot identify an execution configura-
tion within the requested energy budget, it opts to execute
with the least energy consuming configuration.

Beyond achieving the selected ratio of accurate/approxi-
mate tasks and staying within the energy budget, the run-
time system also has to respect user-provided wisdom on the
relative importance of tasks for output quality: high signif-
icance tasks should have higher priority for accurate execu-
tion over lower significance tasks in the same task group.

Ideally, the runtime system can have a priori information
on the number of tasks to be issued in a task group and
the distribution of significance levels within the group. In
this case it is straightforward to execute approximately the
tasks with the lowest significance in each group in order to
achieve the target ratio. If this is not the case, the respective
information has to be collected at runtime. We accomplish
this by having the master thread buffering tasks on creation,
while postponing task issuing to worker queues. When the
buffer is full, or when a synchronization construct is reached,
the tasks in the buffer are sorted by significance. Then,
the runtime estimates the optimal execution configuration
and tags each task for accurate or approximate execution
according to its relative significance and the target ratio. We
use two runtime system algorithms, one using global state
for preserving the exact accurate task ratio and one using
distributed local state for estimating the accurate task ratio
from partial execution-time information. The algorithms are
presented in an earlier paper [18].

5. EXPERIMENTAL EVALUATION
We use six benchmarks to validate our framework and

its ability to execute applications with a pre-defined energy
budget, while gracefully trading off output quality with en-
ergy efficiency. The benchmarks have been manually ported
to the proposed significance-driven programming model. We
compare our framework against loop perforation [13] in terms
of quality of results under the same energy constraints.



5.1 Benchmarks
We apply different approximation approaches to each bench-

mark, subject to algorithmic characteristics of the underly-
ing computation.

Sobel is a 2D filter for edge detection in images. The ap-
proximate version of the tasks uses a lightweight Sobel sten-
cil with just 2/3 of the filter taps. Additionally, it substi-

tutes the costly formula
√

sblx
2 + sbl2y with its approximate

counterpart |sblx| + |sbly|. Significance is assigned to tasks
in a round-robin manner, which ensures that approximated
pixels are uniformly distributed throughout the output.

Discrete Cosine Transform (DCT ) is a module of the JPEG
compression and decompression algorithm [14]. We assign
higher significance to tasks that compute lower frequency
coefficients, as the human eye is more sensitive to those
frequencies. Should a task be executed approximately, the
computation is dropped.

Fisheye lens distortion correction [2] is an image process-
ing application which transforms images distorted by a fish-
eye lens back to the natural-looking perspective space. The
exact algorithm initially associates pixels of the output, per-
spective space image, to points in the distorted image. Then,
interpolation on a 4×4 window is applied to calculate each
pixel value of the output, based on the values of neighboring
pixels of the corresponding point in the distorted image. The
approximate task also performs the inverse mapping proce-
dure, however instead of calculating each output pixel by
interpolating around the corresponding point in the input,
it simply uses the value of the nearest neighboring pixel.

K-means is an iterative algorithm for grouping data points
from a multi-dimensional space into k clusters. Each itera-
tion consists of two phases: Chunks of data points are first
assigned to different tasks, which independently determine
the nearest cluster for each data point. Then, another task
group is used to update the cluster centers by taking into
account the position of the points that have moved. The
first phase is characterized as non-significant, because errors
in the assignment of individual points to clusters can be tol-
erated. Approximate tasks compute a simpler version of the
Euclidean distance while also considering only half of the
total dimensions. The second phase is significant, as it is
harder to recover from a wrong estimate of a cluster center.

MC [19] applies a Monte Carlo approach to estimate the
boundary of a sub-domain within a larger partial differen-
tial equation (PDE) domain, by performing random walks
from points of the sub-domain boundary to the boundary
of the initial domain. Approximate configurations drop a
percentage of the random walks and the corresponding com-
putations. An approximate, lightweight methodology is also
used to decide how far from the current location the next
step of a random walk should move.

Canneal, a code from the PARSEC benchmark suite [3],
applies an annealing methodology to optimize the routing
cost of a chip design. This optimization method pseudo-
randomly swaps netlist elements. If the swap results in bet-
ter routing cost it is accepted immediately. Local minima are
avoided by rarely accepting swaps that increase the routing
cost of the netlist. Approximate tasks try less swaps (1/8)
than accurate ones. All tasks are assigned the same signifi-
cance value, so the tasks to be approximated are randomly
selected by the runtime, according to the target ratio.

5.2 Experimental Methodology
The experimental analysis was carried out on a system

equipped with two Intel(R) Xeon(R) E5-2650 processors clo-
cked at 2.00 GHz, and 64 GB shared DRAM. Each pro-
cessor has 8 cores. Energy and power are measured using
likwid [16], which provides access to the Running Average
Power Limit (RAPL) registers of the processors.

The profiling phase uses a pool of representative input
sets for each benchmark, discussed in Section 3. At the end
of the profiling and model fitting process, each benchmark
is associated with a model estimating its energy consump-
tion according to the input size and execution configuration.
This formula is, in turn, used by the runtime system to take
online decisions on the execution configuration.

To evaluate our approach, we use for all benchmarks un-
seen input sets (and input set sizes) which have not been
used during the training phase. All benchmarks are exe-
cuted accurately, in all possible core configurations. From
those executions we identify the one that consumes the least
energy. If forfeiting quality is not an option for the end-user,
this configuration represents the minimum energy consump-
tion that can be achieved. This is our baseline scenario for
each benchmark.

We then perform a number of experiments for each bench-
mark, while requesting a gradually smaller energy budget,
expressed as a percentage of the baseline. The framework
uses the model to decide, at runtime, the ratio and concur-
rency level with which it can achieve execution within the
requested energy budget, while minimizing the impact on
output quality by maximizing the ratio of accurate tasks.

We present a comparison of the quality achieved using our
framework with a perforated execution of each benchmark
targeting the same energy budget. We also present the opti-
mal (oracular) configuration (cores, ratio) for each case and
compare it to the one selected by our system.

5.3 Experimental Results
Figure 1 summarizes our results. We present three charts

for each benchmark, organized vertically and depicting Qual-
ity, Energy and Ratio/Cores. For the media applications
(DCT, Sobel, Fisheye) the quality is quantified using the
PSNR quality metric (higher is better). For Kmeans, the
quality of output data is characterized by computing the
average distance between data points and the center of the
cluster they are assigned to (lower is better). Finally, for
MC and Canneal we report the relative error with respect
to an accurate execution (lower is better). In all charts the
horizontal axis represents the requested energy budget, as
a percentage of the energy consumed by the least energy
consuming accurate execution. The vertical axis of the en-
ergy charts presents the energy that was actually consumed
by approximate executions as a percentage of the energy
consumed by the accurate execution. In quality and en-
ergy charts we present the quality/energy achieved by our
framework, the optimal oracular executions (determined ex-
perimentally offline) and loop perforation. Finally the Ra-
tio/Cores charts present the decisions of the runtime: the
number of cores corresponds to bars, while the approxima-
tion degree is presented as lines. We compare the choices of
our runtime to the optimal oracular configuration.

Our framework produces program configurations that al-
ways match or are very similar to the optimal ones. Even in
the cases the runtime opts for a non-optimal configuration,
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Figure 1: Quality, energy, and execution configurations for different energy targets (as a percentage of the most energy-
efficient accurate execution). Energy & quality plots show the results achieved by our system, an oracle selecting the optimal
configuration and loop perforation. The energy plots include a 45° line to visualize the ideal relation between achieved energy
ratio (vertical axis), against the requested (horizontal axis). The configuration of the system compares the selected cores and
approximation degree of the optimal solution with the respective ones selected by our framework.

the difference in the achieved energy footprint and quality
of results is negligible, with the exception of Canneal and
Kmeans which are discussed further later in this section.
Both our approach and the optimal tend to adapt concur-
rency to utilize all cores of one or two CPUs, depending on
the parallel efficiency of each application and the input size.
This is expected, as the dominant term in power estimation
is due to the activation of additional CPUs.

We observe that multimedia applications are well-suited
for our programming framework. All three applications can
execute with as little as 50% of the energy required by the

optimum accurate execution and match the optimal achiev-
able quality. The lowest achievable energy mainly depends
on the complexity of the approximation function we use. At
the same time the complexity of the approximation function
dictates the quality of the output for the most aggressive de-
grees of approximation. When approximating all tasks we
observe PSNR equal to 18.70, 28.99, 36.01 dB for Sobel,
DCT, and Fisheye respectively. The perforated execution,
when consuming the same amount of energy produces in-
ferior quality corresponding to PSNRs of 10.75, 13.75, 7.73
dB respectively. Our methodology clearly produces higher



quality of results with the same energy budget. Multime-
dia benchmarks take full advantage of the significance and
approximation features of the programming model. More-
over, they scale to larger inputs by adapting the number
of tasks accordingly, therefore our model can predict their
performance with high accuracy. Finally, the execution of
approximate tasks has straightforward and easy to model
effects on execution time: more approximate tasks result to
less computation and thus energy savings.

For MC we observe that our framework makes optimal
choices in almost every case. Approximation in MC drops
random walks, similarly to perforation, therefore we observe
similar results with both techniques. A lower energy budget
results to pruning some of the random walks of the search
space. This reduces energy, albeit with a measurable impact
in quality. We can achieve consumption as low as 30% of
the energy required by the most energy-efficient accurate
execution, using a ratio of 0.2.

Our model is less accurate in its predictions for Canneal ,
compared to multimedia benchmarks. This is a consequence
of the bad, unpredictable locality pattern of this application.
Canneal uses large data structures to store information on
netlist elements. The random way each task accesses mem-
ory locations increases cache misses, in particular false shar-
ing misses that introduce excessive data transfers between
the last-level non-shared caches of cores. This unpredictable
behavior cannot be modeled accurately by our framework.
As a result, we underestimate the execution time of the ap-
plication and often select configurations that do not satisfy
the energy constraints. This is particularly true for very
tight energy budgets. That said, in all cases we achieve con-
sistently better quality of results compared to perforation.
It is also worth noting that the runtime consistently selects
few cores to execute the application, which is expected due
to the low efficiency with an increasing number of cores.

Kmeans shows the limitations of our approach. It is no-
toriously difficult to be modeled, as it is iterative, with
the number of iterations being heavily dependent on the
characteristics of the input set (and not just the input set
size). Moreover, wrong decisions in the approximate tasks
(point classification) tend to increase point movement be-
tween clusters, and thus the workload of accurate tasks (clus-
ter center calculation). Moreover, even when we approx-
imate 100% of the point classification tasks, we can only
reduce the energy footprint by at most 50%. This is be-
cause our approximation disregards half of the coordinates
of each point. For such applications, a blind approach such
as loop perforation proves to be a viable solution. It can
reduce energy consumption to 20% of the baseline, keeping
the relative error within 5%.

6. RELATED WORK
To the best of our knowledge this work is the first to pro-

pose a parallel programming model for significance-aware
approximate computation, and the first to model and ex-
plore a design space for approximate parallel applications
that achieves quality optimization under resource constraints.
Our work departs from prior art in approximate computing
in several ways.

Compared to approximate programming APIs for exam-
ple Green [1] and stochastic processor software APIs [15],
our programming model offers the higher level abstraction
of computational significance for managing quality, while

delegating the selection of tasks to approximate and the
control of result quality to a dynamic optimizer and the
runtime system. Contrary to approximation techniques via
loop perforation implemented in the compiler [13], our pro-
gramming model uses domain expertise available from the
programmer, which we demonstrate to be necessary for effec-
tive approximation in at least one application domain. On
the other hand, our programming model remains general-
purpose, contrary to application-specific approximate code
generators such as SAGE [10], Paraprox [9] ApproxIt [20]
and related work on iterative solvers [4] and video codecs
[12]. Compared to other approximate language frameworks
such as EnerJ [11], our programming model offers addi-
tional features including task-parallel execution and energy-
constrained runtime optimization of output quality.

Compared to implicitly parallel and explicitly parallel ap-
proximate computing frameworks, such as Quickstep [5],
variability-aware OpenMP [8] and variation tolerant Open-
MP [7], our programming and runtime system provides bet-
ter optimization capability via selective execution of approx-
imate code and dynamic control of accuracy and efficiency.
We achieve this by providing concurrency control (elastic-
ity) and the ability to execute in a range of operating points
that meet quality and energy constraints.

7. CONCLUSION
This paper introduced the first directive-based program-

ming model that allows developers to specify computational
significance at the granularity of tasks. This information
is used to achieve energy-constrained execution with grace-
ful quality degradation. An offline, profile-based, training
process produces a model which predicts the energy foot-
print of a given application as a function of its input size,
the number of cores used and the ratio of accurate versus
approximate tasks. This model is exploited by the runtime
system of an energy-constrained multicore platform to steer
execution towards a configuration that maximizes quality of
output while complying with energy constraints.

The experimental evaluation across several benchmark co-
des shows that the exploitation of programmer wisdom on
the significance of computations is necessary in order to
achieve energy constrained execution without excessive qual-
ity loss. This is particularly evident when comparing our ap-
proach against loop perforation [13], a blind approximation
technique applied at the compiler level. In this work we con-
sider programmer wisdom as the corner stone of significance-
driven computing. However, our intuition indicates that an
automatic, or at least semi-automatic significance analysis
of computations may be realistic and would widen the ap-
plicability of the proposed framework.

In the future, we plan to investigate automatic significance
analysis methods. We also intend to explore alternative op-
timization scenarios, by combining profile-based methodolo-
gies with dynamic heuristics in the runtime system. More-
over, we will investigate effective domain-specific ways to ex-
press quality constraints, and use the framework to achieve
automated energy-efficient execution within quality limita-
tions. Finally we plan to work on cost effective ways to
evaluate the intermediate quality of results at runtime.
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